On the quantitative isoperimetric inequality in the plane
نویسندگان
چکیده
In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ(Ω), where δ is the isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
منابع مشابه
Isoperimetric inequalities in the Heisenberg group and in the plane
We formulate the isoperimetric problem for the class of C2 smooth cylindrically symmetric surfaces in the Heisenberg group in terms of Legendrian foliations. The known results for the sub-Riemannian isoperimetric problem yield a new isoperimetric inequality in the plane: For any strictly convex, C2 loop γ ∈ R2, bounding a planar region ω, we have
متن کاملA Generalized Affine Isoperimetric Inequality
A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.
متن کاملA Quantitative Isoperimetric Inequality on the Sphere
In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.
متن کاملIsoperimetric inequalities and variations on Schwarz's Lemma
In this note we prove a version of the classical Schwarz lemma for the first eigenvalue of the Laplacian with Dirichlet boundary data. A key ingredient in our proof is an isoperimetric inequality for the first eigenfunction, due to Payne and Rayner, which we reinterpret as an isoperimetric inequality for a (singular) conformal metric on a bounded domain in the plane.
متن کاملA Quantitative Isoperimetric Inequality for Fractional Perimeters
Recently Frank & Seiringer have shown an isoperimetric inequality for nonlocal perimeter functionals arising from Sobolev seminorms of fractional order. This isoperimetric inequality is improved here in a quantitative form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017