On the quantitative isoperimetric inequality in the plane

نویسندگان

  • Chiara Bianchini
  • Gisella Croce
  • Antoine Henrot
  • CHIARA BIANCHINI
  • GISELLA CROCE
چکیده

In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ(Ω), where δ is the isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric inequalities in the Heisenberg group and in the plane

We formulate the isoperimetric problem for the class of C2 smooth cylindrically symmetric surfaces in the Heisenberg group in terms of Legendrian foliations. The known results for the sub-Riemannian isoperimetric problem yield a new isoperimetric inequality in the plane: For any strictly convex, C2 loop γ ∈ R2, bounding a planar region ω, we have

متن کامل

A Generalized Affine Isoperimetric Inequality

A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santalo inequality and the affine isoperimetric inequality of affine differential geometry.

متن کامل

A Quantitative Isoperimetric Inequality on the Sphere

In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.

متن کامل

Isoperimetric inequalities and variations on Schwarz's Lemma

In this note we prove a version of the classical Schwarz lemma for the first eigenvalue of the Laplacian with Dirichlet boundary data. A key ingredient in our proof is an isoperimetric inequality for the first eigenfunction, due to Payne and Rayner, which we reinterpret as an isoperimetric inequality for a (singular) conformal metric on a bounded domain in the plane.

متن کامل

A Quantitative Isoperimetric Inequality for Fractional Perimeters

Recently Frank & Seiringer have shown an isoperimetric inequality for nonlocal perimeter functionals arising from Sobolev seminorms of fractional order. This isoperimetric inequality is improved here in a quantitative form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017